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F49620-94-1-0051:

3D Collapse Phenomena in Dispersive Nonlinear Media:
A Critique of Envelope Models

Principal Investigators: A.C. Newell, J.V. Moloney
Arizona Center for Mathematical Sciences, Department of
Mathematics
University of Arizona, Tucson 85721

Co-Principal Investigator: E.M. Wright
Arizona Center for Mathematical Sciences
and Optical Sciences Center
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Overview

The main goal of our funded research was to perform a systematic inves-
tigation and evaluation of the utility of envelope equations, in particular
the nonlinear Schrédinger equation (NLS) and its generalizations, for mod-
elling self-focusing (SF) collpase phenomena in transparent dielectric media.
The relevance of this work for the mission of the Air Force is that envelope
equations are now being used as models for ultrashort pulse eye damage
studies and it is a priori unclear whether these equations are valid. Specifi-
cally, for the high peak powers present in ultrashort (sub-picosecond) laser
pulses the peak power may exceed the critical power for spatial self-focusing
collapse in the vitreous humor (1 MW), resulting in potentially increased
retinal damage due to both increased local intensities at the retina and also
the occurence of light-induced breakdown (LIB). It is well known that for
peak powers exceeding the critical power for self-focusing the envelope equa-
tions predict that the field will collapse to a singularity in a finite distance,
thus clearly violating the assumptions underlying the envelope approxima-
tion. On the other hand other physical effects occuring within the vitreous

humor, such as multi-photon absorption (MPA), serve to oppose the col-
“lapse and act as perturbations to the envelope equations. The issue is then
whether the perturbed or generalized envelope equations avoid the unphysi-
cal collapse and are therefore legitimate models for eye damage studies, and
our work has shown that this is indeed the case. |
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Our work, which was performed during the years 1993-1996, was success-
fuly carried to completion and has resulted in several journal publications
[1)-[9] and presentations at national and international meetings. Basically,
the research performed is divided into three sections, namely

1. Fundamental issues concerning arrest of collapse in transparent media.

2. Development of reliable models for collapse and optical breakdown in
transparent media, in particular water.

3. Nonlinear effects at highly absorbing interfaces.

In the following paragraphs we provide overviews of the work conducted with
details given in the following Sections. Section (1) describes our fundamen-
tal studies of the arrest of collapse in transparent media displaying normal
group-velocity dispersion (GVD). It had previously been suggested on the
basis of numerical simulations that normal GVD can arrest the spatial col-
lapse associated with the envelope equations by casuing pulse-splitting. To
verify this conclusion we developed a theory of critical collapse for pulses in
the presence of normal GVD [1). However, further studies showed that nor-
mal GVD alone is not enough to arrest collapse [2], but rather the collapse
occurs at higher peak powers as the GVD is increased, that is, it delays the
collapse as oppossed to removing it completely.

Section (2) contains the bulk of the work conducted, and deals with
the development of reliable models for ultrashort pulse propagtion in wa-
ter as a model for propagation in the vitreaous humor. In particular, we
have developed a comprehensive model for propagation in water which ac-
counts for self-focusing collapse, normal GVD, multi-photon absorption and
avalanche breakdown. This work was conducted in close collaboration with
our colleagues at the Armstrong Laboratory, Brooks AFB, and resulted in
the transfer of an operational code for nonlinear propagation in the vit-
reous humor which was later used for studies of eye damage. In particu-
lar, we maintained regular contact with Drs. Richard Albanese and Mary
Potasek at the Mathematical Products Division and Drs. Mark E. Rogers,
Pat Roach, Randy Thompson and Paul Kennedy at the Optical Radiation
Division. This interaction was mediated in the form of regular contract
reviews, meetings and Lab. visits which are tabulated in Sec. 5.

The final Section (3) deals with nonlinear effects at highly absorbing in-
terfaces. This problem is relevent to the optical properties for light incident
from the vitreous humor onto the retina, in particular the highly absorbing
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retinal pigment epithelium in which damage can occur. At present very
little is known about the nonlinear properties of highly absorbing interfaces
but it is clear that the usual envelope equations must fail as the absortpion
per wavelength approaches unity. We have investigated nonlinear refection
properties in this regime and have discovered a new phenomenon, the Non-
linear Optical Skin Effect (NOSE) in which a short pulse reflected from the
nonlinear absorber suffers a Doppler shift resulting from a moving boundary
induced in the medium [8].

In the remaining Sections we now provide more details of each area of
research.

1 Fundamental Issues

Our work has served to elucidate the understanding of self-focusing collapse
of ultrashort pulses. In particular, we investigated the issue of whether
normal GVD can halt self-focusing collapse as has been proposed, and also
whether collpase is a feature of the full solution of Maxwell’s equation. High-
lights of this area include

e An analytic theory of the effects of normal GVD on collapse showing
its arrest close to the critical power [1].

e Derivation of the threshold power for collapse in the presence of GVD
[2).

o Numerical study of the conical emission and spectral broadening which
accompany collapse and their roles as signatures of pulse-splitting [3].

e Development of a numerical scheme for soling the full Maxwell’s equa-
tions for nonlinear optics.

o Theoretical prediction of carrier wave shocking for femtosecond optical
pulses [4].

1.1 Arrest of crtitical collapse by GVD

To address the effects of normal GVD on SF collapse we generalize the
usual steady-state SF equation to allow for pulsed operation. Then taking
A(z,y,t;z) to be the envelope of the singly polarized electric field E with

carrier wave exp(ikz — wwt), k = M, and 1ntr9duc1ng the retarded time




f=t—k'z, k' = (w')"! is the inverse group velocity of the wavepacket, we
obtain the scaled propagation equation

A, =iVZA+i|A|PA — ivAy, (1)
where we now understand ¢ to represent the retarded time t—k'z. In (1), the
transverse coordinates have been scaled with v/2k, 7 is 3k" = —zlzw"”. We

denote by d the number of transverse dimensions. Here d = 1 or 2. We take
the order of nonlinearity s to be such that sd = 4 so that here s = 4 or 2.
The case where k" > 0(k" < 0) is called normal (anomolous) dispersion. For
pulses in the 100 femtosecond to 1 picosecond and beyond range with beam
widths of the order of millimeters, dispersion along the pulse propagation
direction is small when compared to diffraction. Therefore, at least initially,
the term Ay is small and each individual cross-section of the pulse pursues
its own dynamics independent of the others.

In the absence of GVD each time slice in the pulse is assumed to collapse
in the self-similar form

d 2 .
A(r,6,6) = oEx(§) expl %+ ] @)

after capturing a critical number of photons. The function x(£) gives the
shape of each cross-section, and the new independent variables are defined
as .

£ = gp, ®3)
T = / g2dz' | (4)
where o = g,/g, and the operators transform as 8, = g*(atb + 8;) and

Vf, = gzvg. A special combination of g and its derivatives also arises in this
analysis and is defined as,

1
p=glartad). 5)

This new variable is proportional to the difference of the local curvature and
twice the square of the local scale length of g.
In the absence of dispersion, the equations

d

E‘g = ag, (6)
2 - -, ™
d b
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describe the evolution of g, @, and 8 on the collapsing filament where a =
d(R3)/(¢€%R3) is the dimension times the photon number divided by the
width of the ground state solitary wave of the cross section at t = 0.

To proceed we extend the above analysis of the self-similar collapse which
has been so successful in the sign definite case to help us understand what
the effect of normal dispersion is on the pulse as it begins to collapse in
d-dimensions. First we are going to assume that (¢) the strength of the term
with positive dispersion, v/t2, where t, is the initial pulse width, is small,
and (i) the central cross section of the pulse, which we take to be ¢t = 0,
has sufficient photons so that it collapses and reaches self-similar form (2).

Using the self-similar form of A, as stated in (2), the dispersion term is
rewritten as,

A = —B8,200.4, (9)
A = —82200.A+ (0:20)%0%4 . (10)

At the peak of the envelope (10) simplifies. First, 8;2p|t=0 = 0 for a sym-
metric initial pulse centered at ¢ = 0. Second, each of the neighboring
cross-sections have longer collapse distances making 82z9|¢=0 > 0. Thus, in
the neighborhood of ¢t = 0 at which the first collapse occurs,

A = -0%z08,4, (11)

and iyAy = €(1 — i€)"}(V2A + |A]°A), where € = yz§ > 0. The equation
for A now reads,

A, = iVZA4i|AIPA - (1 — i) (VEA + |A°4) . (12)

Substituting the self-similar form (2) into (12), and using the new vari-
ables defined in (3) - (5), it is found that

i Orx—x+ Vix+|x"x+pEx =

da . ) a?
S x+Hix—iB+ ) - (13)
This equation gives the evolution of the transverse profile, x, as long as o
and S are known.

For our purposes we can obtain equations for @ and f from the solvability
condition of the first-order solution in the asymptotic expansion of x, where

—€[0rx + €O x +

X=Xo+x1+x2+--} (14)
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and it is assumed that o® > O;a, 0,x < 1, and B < 1 as 7 — oo. The
zero-order equation in this expansion is

Vixo = X0 + |Xol*x0 + B’ x0 = 0 , (15)

and its solution should satisfy the conditions x(00) = x¢(0) = 0. Near the
peak for small B¢2xo, (15) is approximated by the ground state stationary
solution of the d-dimensional NLS with 4 = 0 in (1), Ro.

The first-order equation is

S - . .
Lxyi + §|Xol' 2@xt = —iv(B)xo0 — 0rxo

d . . o,
- e[a(-z— + £8¢)x0 +ix0 — (B + '4—)§ Xo) » (16)

where

L= [VE- 1468+ G+ Dol

By rewriting (16) in terms of the real and imaginary parts of x1 using
x1 = 6 + 1%, and 8,0 = Opx00-P one obtains,

L6 = —ea(22 +E0x0) , (17)
2
Lp = -Opxo0B—ell-(B+ ) xo-v(Bxo,  (18)
where s s
Ly=Vi-1+p6+ (5 + Dixol* £ '2'|Xo|'_2X3 . (19)

It has been assumed that £ ~ O(1) near p = 0'and that the term B2y is
small. The solvability condition for (18) requires that

(Ral0)0rf = ~o(Pxo - (D) — 6+ SNERD] . (20)

Using the relation, (Ro|0px0) = (¢2R2%)/d, the evolution of g is given by the
set of ordinary differential equations

Y = g, (21)
Z_:' = 43-ao*, (22)
d 2

B o o) -ca-38). (23)
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This reduced set of equations (21) — (23) describes the evolution of the
parameters of the self-similar solution near the peak of the envelope in the
presence of normal dispersion. As in the unperturbed case, the behavior of
g indicates whether collapse occurs.

We now analyze the phase portrait of (22) and (23). In Fig. 1 the phase
portrait of (22) and (23) is shown for € = 0.1, s = 2 and d = 2. In this case
a = 1.674. For any finite value of the dispersion the point ata =8 =01is
no longer an attracting limit point. Trajectories that would have collapsed
for v = 0 now tend to a < 0. Since g is positive g, must be negative and
these trajectories must correspond to solutions that do not collapse, since
a = g-/g. At o = 0 the peak intensity of the pulse reaches its maximum
and begins to decrease.

Note that this pair of equations has two fixed points which lie on the
parabola 8 = a?/4. The right branch of this parabola has a hyperbolic fixed
point while the left has a source. Above these points and to the right of the
left branch of the parabola trajectories tend to infinity along § = a?/4. Ttis
easy to show that these fixed points originate at infinity as € is made finite.
As € is increased, this pair of points moves toward the origin approaching a
point near B = 2 as ¢ tends to infinity. These fixed points are therefore not
relevant to the behavior of the filaments because they are so far away from
the trajectories along which the initial surge towards collapse occurs.

Also note that the number of negatively dispersive coordinates, d, enters
into the first-order equation (16) through the linear operator on the left hand
side and only in the second, almost purely real, term on the right hand side.
Because of this, d, and thus s, only enter the reduced equations through €
and a and then only in (23). Since the structure of the phase portrait of
the reduced equations is relatively insensitive to variations in €¢.and a we
find the surprising result that in addition to being qualitatively similar, the
evolution of wave packets of different dimension undergoing critical collapse
when perturbed by normal dispersion is also quantitatively similar.

Thus we have shown analytically that a finite amount of dispersion has
the effect of arresting the self-similar collapse of a pulse. We have also
verified this conclusion using numerical simulations [1].

1.2 Threshold for collapse

Although normal GVD can arrest critical collapse, this is not the case if
the input power is sufficiently large, or the GV too small. To address this

'\,
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question we return to the NLSE in dimensional form

2 k 2

2ik (g—‘: + %%—‘:) +V3i4A- k%}—zaan + 2k2%|A[2A =0. (29)
We have conducted extensive numerical simulations of (24) with ny > 0,
82k/8w? > 0, and initial data of the form A(z,y,z = 0,t) = exp(—(z? +
y?)/2w3 — t2/2tf,), to explore the dynamics of pulse propagation. These
simulations have shown that as the input power is increased a threshold,
Pry, is reached where self focusing dominates the initial dynamical evolution
of the pulse. Near Pry the pulse splitting process coincides with the arrest
of the collapse at the peak of a pulse.

The solutions of (24) are functions of only two parameters when Gaus-
sian initial data is used. We have chosen to write the first parameter as
¥ = Lpr/Lpg, which measures the strength of the dispersion relative
to diffraction, where Lps = tf,/k” is the linear dispersion length, and
Lpr = wgkr/2 is the diffraction length. The second parameter, p, mea-
sures the strength of the nonlinearity and is the ratio of the peak input
power, P, of a Gaussian pulse to the critical power for 2D self focusing,
P, = (1.22)%7)2/(32ngn3).

The self-focusing threshold in normally dispersive media is greater than
that for stationary 2D self focusing so Pry > 1. Below Pry, pulse splitting
may occur only after the pulse has passed its focus. For P > Pry pulse
splitting occurs at or before the focus of the pulse. For a series of values of the
dispersion parameter v, we have numerically integrated (24) to determine
the threshold power, Prg. This threshold is plotted in Fig. 2, where the
filled circles indicate simulations that were below the threshold, Prp, and
the open circles indicate simulations that were above.

An analytic estimate for the threshold power Pry can be obtained us-
ing physical arguments. This estimate is based on the idea that when the
length scale for self focusing is comparable to the length scale for which
nonlinear dispersive spreading reduces the peak power below the 2D criti-
cal power, self focusing should be prevented. The self-focusing length scale,
zsF, corresponding to the peak input power in the absence of GVD (v = 0)
is

-1
zsr/Lpr = 0.367 [(p% - 0.852)% - 0.0219] ‘. (25)

This length scale is an improved version of that'conjectured by Kelley on the
premise that the collapse should occur near the focal point of the nonlinear
Al
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lens induced by the incident beam. The dispersion length scale, zNrLGvD,
taking into account nonlinear effects, is-that length over which the combined
effects of self-phase modulation and normal GVD would reduce the peak
power from its input value to the critical power p = 1 in the absence of
diffraction. To obtain zyrgvD, We use an approach previously developed
by Potasek et.al. for pulse spreading in optical fibers. A temporal analogy
of Kelley’s approach to self focusing is employed whereby one considers the
“temporal lens” induced by the incident (on-axis) pulse which frequency
chirps the field. Normal GVD then causes the propagating pulse width o(z)
to increase from its initial value ¢(0) according to

g%% o \j 1+ (% +2%)(4vB(2/LpF)?) + (;-3) " (47B(z/Lor)?)? . (26)

In passing from the notation of Potasek et. al. to ours we have used ¢ =
28z/LpF, defs = 2yz/Lpr. Note that when 8 = 0 the variation of the
pulse width is due only to linear spreading. When 1 is small with respect
to B the linear term may be ignored. By assuming that the propagating
pulse remains roughly Gaussian so that p(0)o(0) = p(2)o(2), and setting
p(0) = p, and p(2) = 1, in (26), the dispersion length, znrevD, can be
written in terms of p and 7.

The dynamics of the pulse evolution are dictated by the relation between
2gr and zyrgvp. For zgr > znLevp We expect normal GVD to lower the
peak power of the pulse enough to prevent collapse, so p < Prg. In contrast,
for zgr < znrgvD spatial self focusing should dominate the dynamics and
will correspond to p > Pry. An estimate for the threshold power Pry
in terms of the dispersion parameter o can be obtained by letting zsr =
znLevD- Excluding the linear contributions,

3.38+5.2(7 - 1)]° — 1.84
[ )

Lpr = 2
znLevp/Lor T57p ) (27)
and,
L L
{[3.38 +5.2(P2y - 1)]* - 1.84} (P2 - 0.852)2 - 0.0219]
¥~ (28)

2Pry

This analytic estimate is displayed as the solid line in Fig.2. It provides an
excellent characterization of the numerical datapver a wide range of 7. It




works well for both ¥ < 1, which is the experimentally-important parameter
regime, and for y ~ 1. If the linear spreading distance, zgvD, is used, where
B = 0 in (26), one obtains the curve annotated with dots and dashes, (—-),
plotted in Fig. 2. ‘

1.3 Other issues

The main findings of this section are that normal GVD can arrest collapse
for powers close to critical, but only for powers below a threshold value
dependent upon the value of the GVD. Below this threshold the collapse is
arrested via pulse-splitting, but above the threshold even the pulse splitting
is not sufficient to arrest collapse before the envelope approximations fail.

In view of the importance of these results we have investgated the col-
laspe further to look for potential experimental signals of the pulse-splitting
phenomenon [2]. Our numerical simulations show that conical emission ac-
companys pulse-splitting, the frequency of the emitted cone being depen-
dent on the value of the GVD. The conical emission is also accompanied by
significant superbroadening of the pulse, and is responsible for the pulse-
splitting phenomenon. We have related both the spectral super broadening
and conical emission to a fundamental four-wave interaction which can be-
come phase-matched via the normal GVD.

We have also begun to explore the arrest of SF collapse beyond the en-
velope approximation. For this we have developed Maxwell equation solver
which are capable of handling nonlinearity. Numerical simulations indicate
that vectorial field effects arrest collapse as the field approaches wavelength
scales, even in the absence of normal GVD. However, there is no support-
ing theory for this at present. We have also discovered a new phenomenon
which is beyond the envelope approximation, namely, carrier wave shocking
[4]. Optical shocks have been studied for sometime in the area of nonlinear
fiber optics. These shocks appear, however, in the field envelope. We have
found that for ultrahort pulses shocks can start to appear on the carrier,
and is characterized by the appearence of a strong third-harmonic. Carrier
shocks may play a significant role in the arrest of SF collapse when the pulse
length contracts and the intensity gets very large, since the energy converted
to the thrid-harmonic may be sufficient to reduce the fundamental power
below critical.

<«
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2 Self-focusing and Optical Breakdown

In this section we describe our achievments in the area of modelling of SF
and LIB in water as a model for the vitreous humor. The full details of our
extensive numerical studies are presented in Refs. [5, 6], and here we display
the most revealing results. Research highlights include

e Development of a comprehensive model for nonlinear propagtion in-
cluding SF, GVD, LIB, and MPA [6].

e Development of a code for nonlinear propagation which was transferred
to Brooks Air Force Base for studies of eye damage.

e Analytic criteria for the relative roles of SF and LIB as a function of
pulse length and focusing conditions [5]. '

e Calculations of breakdown thresholds with and without SF and com-
parison with previous theories and experiments where possible. This
provided validation of the model.

e Demonstration that SF and LIB are both key players in ultrashort
pulse propagtion in water.

e Detailed investigation of strongly nonlinear behavior of ultrshort pulse
collapse shwoing pulse splitting and potentially new mechanisms for
eye damage. :

2.1 Theoretical Model

To start we describe the general theoretical model for for nonlinear propa-
gation in water which is a generalization of the model previously studied by
Feit and Fleck [10] to include GVD, SF, and MPA. Then assuming propa-
gation along the z-axis, the equation for the electric field envelope £ (ry2,1)
in a reference frame moving at the group velocity is

ik" 9%€

& i, . 20 Tyi . BE) ok_a
Vi€ 5 38 +ikgna|E|°E 2(1+zw'r)p£ 3 |€] £, (29)

9z~ 2k

where the terms on the right-hand-side describe transverse beam diffraction,
GVD, nonlinear SF, absorption and defocusing due to the electron plasma,
and MPA involving K photons, respectively. Here w is the optical frequency,
|€]? the intensity, k = nyko = mpw/c, the quantity k" = 82k/8w? controls
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the magnitude and sign of the GVD, with k" > 0 corresponding to normal
dispersion and k” < 0 to anomolous dispersion, ny is the nonlinear coef-
ficient such that the nonlinear change in refractive-index is n2|€|?, o the
cross-section for electron-neutral inverse bremsstrahlung, 7 is the electron
collision relaxation time, and B(X) is the nonlinear coefficient for K-photon
absorption. The order of the MPA is obtained from K = mod(E,/hw) + 1,
which is the minimum number of photons of energy fiw needed to overcome
the ionization energy Ej for liberating an electron from a water molecule.
The Drude model equation which describes the electron density p is [11]

o _1o .o BBUEPK_
The first term on the right-hand-side of this equation describes growth of the
electron plasma by cascade (avalanche) ionization, the second term is the
contribution of MPA, which acts both as a source for the cascade process and
as a contributor to plasma growth, and the third term describes the radiative
electron recombination. In addition, if there is a free-electron density in the
water prior to the pulse it will also be amplified by cascade ionization. Thus
we also include a background initial density pp as an initial condition for Eq.
(30).

Fig. 3(a) shows the focusing geometry we considered. We are interested
in the solutions of Egs. (29) and (30) for an initial collimated Gaussian
beam which enters the water sample following a lens of focal length f

| 2P, r2 2 ikr?
E(r,0,t)= mt:g exp (—;2- - —) , (31)

where P, is the peak input power [P(t) = [2wrdr|f(r,z = 0,t)|* =
Pin exp(—2t%/t2)], wo the spot size, and 7, = 2t, is the full temporal width
at the 1/e? points of the pulse intensity distribution.

We have considered a specific focusing geometry with f = 1.7 cm, this
being roughly the focal length of the eye. Unless otherwise stated the input
spot size was taken as wg = 200 um, which focuses at d = 1.69 cm with
wy = 11.8 pm. The Rayleigh range of the focused beam is zy = 0.1 cm. The
remaining parameters used for water for a wavelength of Ag = 580 nm are
np = 1.33, ng = 4.1 x 10716 cm?/W, K = 4, p*) = 1.55 x 1078 m5W 3,
E,=65¢eV,7=10"1%5 K =4, 0 = 1.4 x 10717 cm?, k" = 0.05 ps?/m,
and P, =1MW. \
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2.2 Light-induced breakdown with linear focusing

To provide a framework in which to view the numerical simulations with
SF and LIB, we first looked at LIB with no SF. This is closely realized
experimentally by the focusing geometry shown in Fig. 3(b). In the absence
of SF we may simply solve Eq. (30) for the density at the linear focus of
the beam '

p(t) = pog(t) + prms(t), | (32)

where
(K) 2K
poo(t) = Pop(2), Pmp(t) = 0(t) s J2, EL—du,

o(t) = exp [;:;E £ |£(u)|2Kdu] .

Pbg(t) is the homogeneous part of the solution which arises from the back-
ground electron density pp, and pmp(t) is the inhomogeneous solution which
grows from the electron density initiated by MPA. Since the analytic so-
lution (32) is not very informative, we have numerically solved the density
equation (30) to obtain the threshold for LIB. Here we use as our criterion
for LIB that p(t = o) = ppp = 10'® cm™3, where p(t = 00) is the final
density following the pulse. This criterion for LIB was selected to coincide
with the appearence of vapour bubbles in the water sample, also known
as the bubble endpoint. The breakdown intensity versus pulse duration is
shown in Fig. 4(a), and the breakdown power in Fig. 4(b), for the three
backround densities pp = 0 cm™3 (dotted line), 10’ cm™3 (solid line), and
10!2 cm~23 (dashed line). The threshold intensity and power are seen to be
insensitive to the background density for pulse durations less than 10 ps,
and the variation in the predicted threshold is only a factor of two even for
pulses as long as 200 ps.

Table I shows a comparison of the breakdown intensity Ipp calculated
here (fourth column) with the previous experimental (second column) and
first-order theoretical (third column) results of Kennedy et. al. [12, 13],
and Hammer et. al. [14], with good overall agreement. The experiment of
Hammer et. al. [14] was performed using a focusing geometry as in Fig.
3(b) with a thin water sample and at a wavelength of 580 nm. Comparison
‘'with the experimental data provides verification of the first-order model
and also of the results from the Drude model contained in Eq. (30). This
comparison gives validation of the Drude model as a reasonable model for
ultrashort pulse LIB. ‘

8
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2.3 Multiphoton initiation versus background electron den-
sity ‘

The calculations performed include components of the generated electron
density which are initiated both from the background electron density pp
and from MPA. Both of these seed electron sources are amplified by cascade
ionization. To determine which of these is the dominant seed electron source
we have calculated the ratio of the background contribution to the total

— Pbg(00)
€= e (@) + Prop(®)’ (33)

By evaluating this ratio as a function of pulse duration we find that ¢ = 1/2
for 7, = Tx = 160 ps, so that MPA and the backround components are in
exact balance. This value is further supported by the first-order model [12]
which yields a pulse duration of 7x = 120 ps for the cross-over. For pulse
durations less than the cross-over, 7, < Tyx, MPA dominates the cascade
initiation, and for 7, > Tx, the background density dominates the cascade
initiation.

2.4 Numerical simulations with self-focusing

The simulations were performed using the beam propagation method in
which the propagation is broken into small linear and nonlinear steps which

_are performed sequentially. Considerable advantage is gained by making
use of the fact that for P < P.. or P ~ P, in the initial stage of the
propagation, when the nonlinear effect is not important and the plasma has
not been generated, the propagation is described by the linear equation with
only diffraction and dispersion. The solution of this equation can be written
down exactly,

E(r,t,z) = EgDy(r, 2) D,(t, 2), (34)

where

t
L

L2 _e?

27

Dy (r2)= 2iz 11 w) P :'w 1 !
H‘Ti;‘,,%"*'z ) ez ts

= tp 2
Du(t:2) = 7525, o°P =0k

~
-~

We use this linear equation to propagate the i‘ﬁit_ial field into the nonlinear
interaction zone, which is then used as the input tp the nonlinear code. This
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represents a considerable reduction in computation time, and also allows
us to use the computational grid more effectively, since the bulk of the
linear focusing by the lens is dealt with before passing over to the nonlinear
propagation code.

Turning now to the numerical simulations with SF, we have determined
the threshold for breakdown in the same manner as before. The results of
our numerical simulations are summarized in Fig. 5 where we show (a) the
breakdown threshold of peak input power (P;,), normalized to the critical
power for collapse, and (b) the threshold intensity, both as functions of pulse
duration 7,. The solid circles in Fig. 5(a) are our data points corresponding
to a peak plasma density of 10'® cm™3. The solid curve is the threshold
power curve obtained in the previous Section without SF, and also shown
in Fig. 4(b). We see, therefore, that for pulses longer than 7, = 10 ps,
the thresholds with and without SF agree very well. This is to be expected
since for these pulse durations the breakdown power is considerably below
the critical power, Pgp < P, and SF plays only a minor role. In contrast,
for 7, < 10 ps the breakdown power is seen to tend towards the critical
power P... This is to be expected intuitively, since as the input power
approaches the critical power small changes in the input power can cause
massive changes in the peak intensity at the laser beam focus, which in turn
can cause very large changes in the peak plasma density generated, so that
the plasma density for breakdown is easily reached. This is particularly true
of the component of the density initiated by MPA since the source term
varies as |£|?K (see Eq. (30)), with K = 4, and MPA is expected to be the
dominant initiation mechanism for plasma generation for pulse durations
less than 7 = 160 ps.

The corresponding breakdown intensities, chosen as the peak intensities
which appeared during the respective numerical simulations, versus pulse
duration are shown in Fig. 5(b) (solid circles) along with the result with-
out SF from Fig. 4(a) (solid line). Here we see a remarkable agreement,
especially for longer pulses, between the results with and without SF. This
agreement stems from the fact that LIB is triggered by the local electric
field strength, or intensity, so that LIB has an intensity threshold [11] which
is essentially independent of the focusing conditions.

Plasma shielding arises when the incident pulse energy is absorbed and
converted to the generation of the electron plasma via LIB, thus shielding
the region beyond the plasma from the full pu\lse energy. In Fig. 6 we show
the peak generated plasma density and corresponding percentage energy
absorbed for pulse durations 7, = 200 ps (solid line), 100 ps (dotted line),
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and 20 ps (dashed line). In each case the lowest power indicated is slightly
above the threshold power for LIB, with weak plasma shielding in each
case. However, far above the threshold the peak plasma density and the
plasma shielding both increase, with 10-25 % absorption depending on the
pulse length. This clearly demonstrates that plasma shielding becomes more
significant above the bubble endpoint threshold, as expected on physical
grounds. -
An interesting aspect of our model is the behavior of nonlinear prop-
agation. Before the high-density plasma is generated, the propagation is
essentially described by the self-focusing solution However, once the plasma
it acts to absorb energy and defocus the beam. The process of absorption
and defocusing could result in very rich nonlinear phenomena which have
not been studied in detail. Here we report a case of numerical simulation
that shows qualitatively different behavior from what we have described in
the previous section. We chose a smaller input spot size, wp = 120 pm, so
as to reduce the effect of linear focusing. This allows us to follow the nonlin-
ear self-focusing, which is very explosive, within the limit of our code. The
process of pulse propagation and plasma generation is presented in Figs. 7
and 8. Fig. 7 shows maz,|e(r = 0, z,t)/eq| (top), maz:p(r = 0, 2,t) (middle)
and energy (bottom) as functions of propagation distance z. It is interesting
to note that there are two peaks in maz;p(r = 0, 2,t), one in front of and
the other behind the focal point z = f. The spatial extension of the plasma
generated is wider than all the cases described in previous sections. One can
clearly see that the energy absorption occurs in a region where the plasma is
generated, while in other regions of low plasma density, the energy is almost
constant. Fig. 8 shows p (top) and e (bottom) as functions of (z,t) at three
propagation distances: (a) z = 1.6869, (b) z = 1.70043, and (c) z = 1.73562.
The pulse starts to split in front of the focal point. While the trailing split
piece (the shorter piece corresponding to higher plasma density) is damped
once the splitting occurs, the leading piece continues to focus and generates
high plasma density behind the focal point [see Fig. 8(c)]. Although here
the energy absorption is relatively higher, the propagating pulse shows a
tendency of not being absorbed. This suggests a possible damaging mecha-
nism: The leading split piece of the pulse may escape the plasma generated
in front of the focal point and reach the retina, causing additional damage.
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3 Nonlinear Absorbing Interface

This section describes our work on nonlinear absorbing interfaces as a start

to addressing the issue of nonlinear effects at the boundary between the

transparent vitreous humor and the highly absorbing retinal pigment ep-

ithelium. The models investigated are not directly relevant to the eye but

shine a great deal of light on the issues which arise at highly absorbing inter-

faces when the absorption per wavelength approaches unity. The key point

is that in this regime the envelope approximation is invalid and an approach

based on Maxwell’s equations must be employed. Previous work in this area

concentrated only on the steady-state properties whereas our interest was '
in ultrshort pulses. Research highlights include

e Theoretical prediction of a new effect whereby an incident pulse is
Doppler-shifted as a result of reflection of a moving absorption front

(8]

e Demonstration of induced focsuing of an ultrashort pulse reflected of
a saturable absorber [9].

Here we concentrate solely on the new results on the nonlinear skin effect.

3.1 Nonlinear skin effect

In the linear optical skin effect a pulse incident from air is reflected from a
_ highly absorbing interface after penetrating only a fraction of a wavelength
into the absorbing medium, this distance being the skin depth The skin
effect is therefore of fundamental importance in understanding the electro-
dynamics of pulse propagation at condensed matter interfaces. In addition,
it belongs to an important class of optical problems for which the notion of
an electromagnetic field envelope varying slowly on the scale of a wavelength
simply does not apply.

We have discovered a nonlinear generalization of the skin effect. Broadly
speaking, saturation of the absorption allows the incident field to penetrate
beyond the linear skin depth into the medium, and this causes an absorp-
tion front to propagate into the medium which separates the regions of low
(saturated) and high (unsaturated) absorption. The front is excited by the
incident pulse which is in turn reflected from the sharp absorption front,
yielding a self-reflected pulse. Thus the absofption front acts as a moving

b
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mirror from which the pulse is self-reflected, and the pulse suffers a red-shift
due to the Doppler effect.

We consider the time-dependent propagation of a linearly polarized plane
electromagnetic wave incident on a nonlinear medium composed of two-level
systems. For propagation along the z-axis, and taking the electric field
polarized along the x-axis, Maxwell’s curl equations take the form

9By _ _BE, 0D, _ _aH,,

ot — 0z’ o~ 0z’

where B, = poH,. The specification of the problem is completed with the
constitutive relation D, = ¢E; + P., where P, is the optical polarisation.
To elucidate the basic physics we employ a two-level model to describe the

optical response with lower electronic state |1) and upper state |2). The
Bloch equations are then

(35)

?%+(72+iw21)ﬂ21 = igﬁgn, %? +71(n-1) = 21’%?0’21 - p21), (36)
where, po; is the off-diagonal density matrix element, n = (P11 — p22) is
the population difference between the lower and upper states, wy; is the
transition frequency, p is the dipole moment in the field direction, and 7,
and 7, are phenomenological damping constants for the population and
polarisation, respectively. The polarization due to the atoms is then given
by P, = N(2)p(p21+c.c.), with N(z) the density of two-level systems which
varies along z in general.

We have solved the coupled Maxwell-Bloch Eqgs. (35) and (36) using a
standard discretization of the Maxwell equations as described by. The Bloch
equations were integrated in time using a standard, fourth-order Runge-
Kutta method. The system of equations was solved with the initial condition
on the field

E.(2,t = 0) = Egcos(2mw(z — z0)/c)e”F%)/(cto)* (37)

along with a similar expression for B, with By = Eg/c. Here Ej is the peak
input electric field, w = 2mc/Ag is the central pulse frequency, 7o = 2¢p is
the full-width at the 1/e? points of the pulse intensity profile in time units,
and zp is the position of the pulse center at £ = 0. The nonlinear interface
was imposed by tailoring the density profile N(2) = 0(z — 2int)No, With zin:
the longitudinal position of the interface. The medium was initialized using
p21 = 0, and n = 1 in the medium. When initializing the field we ensured
that the field protruded negligibly into the nonlinear medium at ¢t = 0.

18




In the limit of cw fields, as previously studied by Roso-Franco, the self-

reflected wave arises when the normalized parameters,
¢._.£fﬁﬁ _ __PEo _

"~ eohye’ T B(nye)M?
are both greater than unity. Physically, 9 determines the linear absorption
per wavelength, adg = 279, and this quantity should be greater than unity
for the linear skin effect. For saturation of the absorption and self-reflection
F > 1 is required, since F? is the peak incident field intensity normalized
to the cw saturation intensity.

We consider the transient regime in which the incident pulse width Zp is
much shorter than the population relaxation time Ty = v ! but longer than
the polarization dephasing time T3 = y5 1 Ty >> to > Ts. For concreteness
we adopt the following specific parameters, w = wi2 = 2 X 10! rads~!,
to = 300 fs, Ty = 0.5 ns, Ty = 50 fs, p = 5eag = 4x 10~2° Cm, No = 4x10'°
cm~3 and zy = —225 pm. For these parameters 9 = 3.8 so that the linear
skin effect is expected at low input intensities. We have numerically verified
that this is indeed the case, and the input pulse suffers minimal distortion
in profile or spectrum upon reflection.

Figures 9(a) and 1(b) show an example of the calculated pulses at two
different times for a peak input field of Ep = 1.6 x 10 V/m. Although
our calculations employ the full field, we display only the envelope obtained
from joining the peaks as shown by the solid line, since it is not possible
to resolve the carrier in the plots. The field strength is associated with the
scale shown on the left-hand-side of the plots. In Fig. 9(a) for t=1.68 ps
the peak of the input pulse has not yet reached the interface at z;n: = 400
pm, but one can clearly see the leading edge of the pulse is penetrating
only a short distance into the interface, as expected for the skin effect. The
dashed line in Fig. 9(a), which is associated with the right-hand scale, is the
local wavelength for the field. This is determined numerically by calculating
the local wavenumber K via K? ~ —E, /E,, where a prime signifies a z-
derivative, and converting to wavelength. In Fig. 9(a) the local wavelength
remains constant at the input value Ag = 942 nm. In contrast, Fig. 9(b)
shows the field profile at a later time ¢ = 2.75 ps following reflection from
the interface (for times between the results shown in Figs. 9(a) and 9(b), the
field profile shows strong ringing due to interference between the incident and
reflected fields). The reflected pulse has developed a double-peaked structure
(solid line), and become significantly chirped ‘(dashed line). In particular,
the central portion of the pulse has a peak local wavelength of 990 nm,

(38)
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a significant red-shift. This red-shift is also evident in the reflected pulse
spectrum (solid line) shown in Fig. 9(c) corresponding to Fig. 9(b), along
with considerable spectral broadening and modulation (the input spectrum
is shown by the dashed line and is associated with the left-hand scale).
The results shown in Fig. 9 are typical of what we observe in our sim-
ulations in the nonlinear regime, namely, distortion of the reflected field
profile and significant spectral modulation and associated red-shift. To ex-
pose the physics underlying these phenomena we show in Fig. 10(a) and
10(b) the spatial distribution of the full field and the population difference
n = (p22 — p11) at various times corresponding to the results shown in Fig.
9. Figure 10(a) shows that the field penetrates progressively further into
the interface as the absorption is saturated, as can be seen by comparing
the field profiles at ¢ = 1.61 ps (solid line) and ¢t = 1.95 ps (dashed line) or
t = 2.28 ps (single-dash-dot line) (at ¢t = 2.62 ps the field has been mostly
refelcted). At ¢t = 1.61 ps (solid line) Fig. 10(b) shows that n = 0 before
the interface signifying zero absorption, and n = 1 beyond the interface sig-
nifying large absorption due to the two-level systems. At later times after
the input pulse has penetrated into the interface, the population difference
is depleted and the absorption front is seen to propagate into the nonlinear
medium. The propagating absorption front maintains a sharp wavelength
scale transition region so that the linear skin effect still occurs but now
from a moving absorption front. Thus the self-reflected field must suffer a
red-shift due to the Doppler-effect, akin to reflection from a mirror moving
away from a source. To validate this physical picture we have determined
the absorption front velocity from the numerical simulation in Fig. 10(b),
and the result is shown in Fig. 10(c). After initially accelerating the front
reaches a maximum velocity of vmqez/c = 0.023 before decelerating back to
zero velocity. The maximum wavelength shift of the reflected pulse due to
the Doppler effect is then AX/Ag = 2Umaz/c fOT Umaz/c K 1 or AX =43 nm
for the free-space wavelength A9 = 942 nm used here. Thus, based on the
Doppler effect we expect a maximum local wavelength of A = 985 nm, in
good agreement with the numerical results in Fig. 10(b). The Doppler effect
upon reflection from the moving absorption front can therefore explain the
magnitude of the observed pulse wavelength chirp.
_ To summarize, we have introduced the dynamic nonlinear optical skin
effect for reflection of pulses from a highly absorbing interface. This new
basic effect for the electrodynamics of interfaces combines the concepts of
self-reflected waves and front propagation, and is also a prime example of a
nonlinear optical phenomenon where the SVEA ifails and the full Maxwell
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equations must be employed. We have shown that the nonlinear optical
skin effect arises from moving absorption fronts so that the red-shifting and
spectral modulation of the reflected pulse are clear experimental signatures
of the effect. :

4 Personnel Supported

Faculty

A.C. Newell (PI)
J.V. Moloney
E.M. Wright
V.E. Zakharov

Postdoctoral Fellows

Q. Feng (50 %)
R. Flesch (50 %)
W. Forysiak (50 %)

Students

Kirk Cook

5 Interactions/Presentations

5.1 Participation/Presentations

o “Nonlinear Mechanisms for Laser Induced Breakdown of Femtosecond
Pulses“, 3rd AFOSR Ultrashort Laser Program Collaborative Work-
shop, Brooks Air Force Base, San Antonio, Texas. 14-16 December
1994. :

o “Issues Relating to the Arrest of Critical Collapse of Femtosecond
Pulses in Normally Dispersive Self-Focusing Media”, invited talk -
Conference on Nonlinear Coherent Structures in Physics and Biology,
10-14 July 1995, Heriot-Watt University. Edinburgh.
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5.2

“Arrest of Critical Collapse of Ultra-Short Pulses in Optically Trans-
parent Media”, Physics Colloquium, Georgia Tech., 24 April 1995.

“Issues in the Arrest of Critical Collapse of Femtosecond Optical Pulses
in Optically Transparent Media”, Physics Colloquium, Free University,
Amsterdam, 28 June 1995.

“Computational Nonlinear Optics”, Computational and Physical Math-
ematics Contractors Meeting, Phillips Laboartory, Kirtland AFB, 28-
30 June 1995.

Consultative and Advisory Functions to Other Labora-
tories and Agencies

Visit by J. Moloney (UA) to “3rd AFOSR Ultrashort Laser Program
Collaboartive Workshop”, Brooks Air Force Base, San Antonio, Texas,
14-16 December 1994, to consult with Dr R. Albanese (AL/OES),
Dr M. Potasek (AL/OES), Dr M. Rogers (AL/CA), Dr B. Rockwell
(AL/OEOP), Dr P. Kennedy (AL/OEOP), Dr C. Cain (AL/OEOP)
and Dr R Thomson (OpTech).

Brooks Air Force visit to ACMS, Department of Mathematics, Uni-
versity of Arizona, 9-12 May 1995. Personnel involved included: J.
Moloney (UA), E. Wright (UA), Q. Feng (UA), R. Thompson (Op
Tech), P. Kennedy (AL/OEO) and M. Potasek (AL/OES).

Brooks Air Force visit to ACMS, Department of Mathematics, Univer-
sity of Arizona. 17-20 August 1995. Discussion on modeling nonlinear
propagation of picosecond and femtosecond laser pulses in water and
in the eye. Personnel involved included: J. Moloney (UA), E. Wright
(UA), Q. Feng (UA), R. Thompson (Op Tech), P. Kennedy (AL/OEO)
and M. Potasek (AL/OES).

Hosting and organisation of the AFOSR/ACMS “Nonlinear Optics”
Workshop, Tucson, Arizona. 9-11 October 1995.
This workshop acts a a contract review for AFOSR and brings Air

Force Laboartory scienctists in direct contact with academic researchers.

Deliverable: Computer Code to simulate critical self-focusing of pi-
cosecond pulses in ocular and related media with plasma generation
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through avalanche ionization included. Code is currently being run by
Dr Randy Thompson (Op Tech) and Dr Paul Kennedy (AL/OEO) at
- the Armstrong Laboratory.
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Table I: Breakdown threshold intensities (W/cm?).

7, | Experiment! | First-order? Igp®

24ps| B5x101 6.66 x 1017 | 8.6 x 101!
400 fs | 1.26 x 1012 | 2.56 x 10*2 | 2.7 x 102
100 fs | 5.6 x 10'2 | 5.46 x 1012 | 5.4 x 102

1. Experimental thresholds for 50% probability of breakdown
2. First-order calculation of the intensity breakdown threshold.
3. Intensity breakdown threshold from present work.
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- FIGURE CAPTIONS

Fig. 1 The phase portrait of the reduced equations (22) and (23) for s = 2
and d = 2, where @ = 1.674 and € = 0.1. The attracting point at (@, 8) =
(0,0) is removed for finite €. Trajectories tend to a < 0 where no collapse
takes place.

Fig. 2 Results of numerical simulations: The full (open) circles correspond
to those simulations below (above) Prg. The solid line displays the analytic
estimate (28) for Pry as a function the dispersion parameter 7. The line,
(—-), displays the estimate using linear spreading, and the dotted line using
5 times the linear estimate.

Fig. 3 Focusing geometries considered in the text: (a) The incident laser
pulse is focused from air through a lens with f = 1.7 cm directly into a
water sample, where it comes to a linear focus at d = 1.69 cm, and (b) the
incident laser pulse is focused from air through a lens with f = 1.7 cm, back
into air and onto a thin water sample at the linear focus.

Fig. 4 (a) The breakdown intensity Ipp versus pulse duration, and (b) the
breakdown input power Pgp normalized to the critical power for collapse,
P.. = 1 MW. The three curves correspond to initial background densities
of pp = 0 (dotted line), pp = 10 cm™3 (solid line), and pp = 102 cm™3
(dashed line).

Fig. 5 LIB thresholds with SF: (a) Threshold power normalized to the
critical power for collapse, and (b) the threshold intensity, both as a function
of pulse duration 7,. In (a) the solid circles give the threshold for a peak -
density of 10'® cm™3, the triangles are the threshold powers obtained using
the criterion of a peak density of 1012 cm~3, the numbers above the triangles
are the % absorption of energy from the pulse using this density, and the

solid curve is the threshold power curve obtained without SF, as in Fig.
2(b). '

Fig. 6 Peak plasma density (in units of 10'® cm™3) and percentage of energy
absorption as functions of input power for 7, = 200 ps (solid line), 100 ps
(dotted) and 20 ps (dashed), with pp = 101 cm™3.

Fig. 7 On-axis maximum field max; |e(r = 0, 2,t)| (top), plasma density
max; p(r = 0,z,t) (middle) and total pulse energy (bottom, in arbitratry
units) as functions of propagation distance z for Tp = 200 fs, wo = 120 pm
and P = 1.08P.,. '

i
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Fig. 8 Surface plots of |£(z,0, z,t)| (bottom) and p(z, 0, 2, t) (top) at three
propagation distances: (a) z = 1.687cm, (b) z = 1.7em and (c) z = 1.736cm.

Fig. 9 Calculated field profiles (solid lines) for Ep = 1.6 X 10® V/m and
(a) t=1.68 ps before the field enters the interface at zp = 400 pm, and (b)
t=2.75 ps following reflection from the interface. In plots (a) and (b) we
show only the envelope obtained from joining the field peaks. The field
strength is associated with the left-hand scale and is normalized to unity.
The dashed lines in (a) and (b) show the corresponding local wavelength over
the pulse, and are associated with the right-hand scale. Fig. 1 (c) shows
the corresponding pulse spectra. The input spectrum is shown dashed and
is associated with the left-hand scale.

Fig. 10 Spatial distribution of a) the full field in the vicinity of the interface
at zg = 400 pm, and b) the population difference n at times t = 1.61 ps
(solid line), 1.95 ps (dashed line), 2.28 ps (single-dot-dashed line), and 2.62
ps (triple-dot-dashed line), where the front propagates to the right with
increasing time, and c) the numerically calculated absorption front velocity
normalized to c.
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Figure 2

Map of Self Focusing in Normally Dispersive Media
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Theory and Simulation on the Threshold
of Water Breakdown Induced by
Focused Ultrashort Laser Pulses

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy,
D. X. Hammer, B. A. Rockwell, and C. R. Thompson

Abstract— A comprehensive model is developed for focused

pulse propagation in water. The model incorporates self-focusing,
group velocity dispersion, and laser-induced breakdown in which
an electron plasma is generated via cascade and multiphoton
ionization processes. The laser-induced breakdown is studied first
without considering self-focusing to give a breakdown threshold
of the light intensity, which compares favorably with existing
experimental results. The simple study also yields the threshold
dependence on pulse duration and input spot size, thus providing
a framework to view the results of numerical simulations of the
full model. The simulations establish the breakdown threshold in
input power and reveal qualitatively different behavior for pico-
and femto-second pulses. For longer pulses, the cascade process
provides the breakdown mechanism, while for shorter pulses
the cooperation between the self-focusing and the multiphoton
plasma generation dominates the breakdown threshold.

I. INTRODUCTION

HE NONLINEAR optical properties of liquid water are
of considerable interest [1], [2] due to their implications

for pulse propagation in the human eye, the vitreous humor
being predominantly water. Water displays a nonlinear Kerr
effect [2], [3], and self-focusing (SF) can occur at megawatt
peak input powers. In addition to SF, water also displays laser-
induced breakdown (LIB) [4]-[6] in which an electron plasma
is generated due to the high intensity of focused laser pulses.
The electron density grows explosively and serves to absorb
and scatter the remaining pulse energy, thus shielding the
area beyond the focus from further radiation, i.e., the retina
[7]-10]. Indeed. SF leading to LIB has been suggested as the
explanation for anomolies in the retinal damage data for visible
femtosecond pulses [11]-[13]. Nonlinear pulse propagation in
water is therefore of considerable interest in determining laser
safety standards in the ultrashort pulse regime.
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In this paper, we report numerical results on linear and
nonlinear propagation in liquid water using 200-ps to 100-fs
duration pulses. We consider a geometry in which a Gaussian
input field is focused through a lens into the water sample.
thus simulating to first order the focusing properties of the
eye. The studies incorporate LIB, SF, multiphoton absorption
(MPA), and group velocity dispersion (GVD). The model is an
extended nonlinear Schrodinger equation (NLSE) coupled with
an equation describing the plasma generation. The NLSE is
widely used to describe light propagation and has been studied
extensively [14]. An interesting mechanism modeled by the
NLSE is self-focusing and beam collapse. When a focused or
unfocused propagating laser beam undergoes self-focusing, the
on-axis intensity gets enhanced considerably if the power of
the beam is near but below a critical value. When the power is
above the critical value, the collapse, namely an infinitely high
intensity, occurs at finite propagation distance. The collapse
is clearly unphysical and one would expect other nonlinear
effects, such as material breakdown, to come into play due to
the high intensity produced. Here, we extend the NLSE to in-
clude plasma generation, pulse-plasma interaction, and MPA.
The plasma generation is described by two processes: cascade
(or avalanche) ionization and multiphoton ionization. Included
also is the GVD, which has been shown to lead to pulse-
spliting and to arrest the collapse of subpicosecond pulses
[15}-[21]. Two focusing mechanisms exist in our studies:
linear focusing, due to the lens, and nonlinear self-focusing.
A framework for these studies is provided by first studying
LIB without SF, and this model compares favorably with
existing experimental results. We then establish a threshold
for LIB by numerical simulations. Our results show that SF is
a major player in understanding LIB in water for pulses of the
durations considered in this paper and of spot-sizes that can
be easily determined from a criterion given in this paper.

The remainder of this paper is organized as follows. In
Section II, we describe the model equations, the focusing
geometries and material parameters pertinent to experiments,
and write, the equations into dimensionless form with ap-
propriate §calings. Although we will present our results in
subsequent sections in physical units to facilitate comparison
with experiments, a quick inspection of the dimensionless
equations leads to an interesting and important result, i.e..
the relation of the breakdown threshold intensity to the pulse
duration for the case where multiphoton ionization is the

0018-9197/97810.00 ® 1997 IEEE
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Self-focusing threshold in normally dispersive media
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The threshold at which self-focusing initially dominates the dynamics of short-pulse propagation in normally
dispersive bulk media, causing an explosive increase in peak intensity, is estimated analytically and verified
numerically. Intensity-dependent propagation effects such as spectral broadening also occur explosively at this

threshold.

It was recently proposed by Strickland and Corkum!
that normal group-velocity dispersion (GVD) in-
creases the peak input power required for two-
dimensional (2D) self-focusing of short light pulses.
Their proposal is intriguing since it provides a lim-
iting mechanism that does not require higher-order
nonlinear effects, such as saturation of the nonlinear
refractive index,? optical breakdown,® and violation
of the paraxial approximation.*

Because cross sections of a light pulse differ in
power, those having powers that exceed the critical
power self-focus at different rates. In this way, self-
focusing tends to reduce the temporal scale length of a
pulse,®® with concomitant increase in its bandwidth,
permitting GVD to play an increasingly important
role even when it is initially a small effect.’

Normal GVD tends to ease self-focusing by spread-
ing the pulse along the propagation direction. Re-
cent numerical studies of the nonlinear Schrédinger
equation by Chernev and Petrov® and Rothenberg®
demonstrate that normal GVD increases the thresh-
old for catastrophic 2D self-focusing through a tem-
poral pulse-splitting process. Analytic research has
shown that the critical self-similar collapse singu-
larity associated with the 2D nonlinear Schriodinger
equation is removed by normal dispersion.!

The simplest and most ubiquitous model of the
spatiotemporal propagation of a light pulse is ob-
tained as a uniform asymptotic expansion of
Maxwell’s equations. If we take the nonlinear re-
sponse of the medium to be instantaneous and cen-
trosymmetric, the nonlinear Schrédinger equation
for the envelope of a light pulse is obtained as™®

2 2
2;‘1«:(gé L aﬁ) rva-plk4
a0z dw dt w
+ 2R 2 |APA =0, 1
no
We have conducted extensive numerical simulations
of Eq. (1) with n, > 0, 8%k/0w? > 0, and initial data

of the form A(x,y,z = 0,t) = exp[—(x? + y%)/2w,® -
t2/2¢,%] to explore the dynamics of pulse propagation.

0146-9592/94/120862-03$6.00/0

Results with the split-step method!' were checked
against previous numerical simulations.®%? The
first three invariants of motion and the magnitude
of higher-order corrections were monitored carefully.
In the simulations discussed here, nonparaxial ef-
fects remained small. These numerical experiments
show that, as the peak input power is increased, a
threshold Pry is reached® where self-focusing dom-
inates the initial dynamical evolution of the pulse.
Near Pry the pulse-splitting process coincides with
the arrest of the collapse at the peak of a pulse. In
this Letter it is shown that Py corresponds to the in-
put power at which the length scale for self-focusing
equals the length scale for nonlinear dispersion. In
addition, an expression for Pry is derived analytically
and verified numerically.

A consequence of the sharp increase in peak in-
tensity at threshold is the observation of intensity-
dependent processes. An important example is the
explosive spectral broadening that occurs near Pry.
Through four-wave coupling of the wave trains that
make up the pulse, a nonlinear chirp is formed along
the pulse. As a result, upshifted and downshifted
wave packets form under the pulse. The two wave
packets eventually separate in the presence of nor-
mal dispersion, splitting the pulse. The spectrum of
the resulting double-peaked pulse is broadband and
modulated.’® This process occurs over a short prop-
agation length near the self-focusing threshold, re-
sulting in an explosive increase of the bandwidth.
The bandwidth increases more than would be ex-
pected by self-phase modulation in time. The gain in
the four-wave interaction that is responsible for the
broadening is favored for off-axis, frequency-shifted
modes.”® Neither pulse splitting nor this enhance-
ment in the spectral broadening is captured by either
stationary self-focusing or one-dimensional propaga-
tion alone.

The solutions of Eq. (1) are functions of only two pa-
rameters when Gaussian initial data are used. We
have chosen to write the first parameter as y =
Lpr/Lps, which measures the strength of the dis-
persion relative to diffraction, where Lps = t,%/k"

© 1994 Optical Society of America
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Short-pulse conical emission and spectral broadening
in normally dispersive media
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The nonlinear Schrodinger equation predicts conical emission that is due to spatiotemporal propagation of short
pulses in normally dispersive, cubically nonlinear media. This effect is a direct consequence of a four-wave

interaction.

Conical emission has long been associated with spec-
tral superbroadening! (SSB) and has been attributed
to four-photon coupling.? Recent laboratory® ex-
periments demonstrate that SSB correlates with
the threshold for self-focusing (SF). Both these
laboratory experiments and several numerical
experiments*® suggest that SF is inhibited by
normal group-velocity dispersion (NGVD), and the
threshold required for the observation of strong SF
effects is increased,®® having a simple analytical
form.” Near this threshold SSB, conical emission,
and pulse splitting® occur explosively. Here we
show that conical emission is a direct consequence
of the spatiotemporal dynamics of short laser pulses
described by the nonlinear Schrodinger equation

¥ 2
2ik(aﬁ 4+ 3k ——) +v,24-p22 22
dz @ 7]
+ o222 |A2A =0, 1)
no

where k" = 32k/0w? .o > 0 for NGVD. The coni-
cal emission predicted by Eg. (1) is due to a fun-
damental four-wave interaction® that promotes the
transport of energy to a band of modes with finite
frequency and wave-number shifts. These modes
are closely related to those of the modulational insta-
bility of the condensate or the uniform plane-wave
solution.l® Pulse splitting, spectral broadening, and
conical emission are intimately related, and each is
a consequence of this wave interaction. .
For short pulses, corrections to Eq. (1) appear at
the next order in the uniform asymptotic expan-
sion and account for self-steepening, stimulated
Raman scattering, exponential finite-time nonlin-
ear response,!! higher-order dispersion, nonparaxial
effects,’? and vector contributions. Terms in the
next order beyond those appearing in Eq. (1) intro-
duce asymmetries in time and in frequency space.
Below the threshold reported in Ref. 7 these effects
introduce small corrections that become important

0146-9592/94/110789-03$6.00/0

only at propagation distances larger than those re-
quired for pulse splitting and conical emission. We
neglect higher-order effects and focus on the charac-
teristics properties of the conical emission captured
by Eq. (1).

First we demonstrate the growth of frequency-
shifted, off-axis modes numerically at parameter
values below the threshold reported in Ref. 7 and
above the stationary SF threshold, P.. For the pa-
rameters of interest here, the space and time dy-
namics are strongly coupled, and standard analytic
technique fail. The split-step method™ is used
to integrate Eq. (1) with initial data of the form
Alx,y,z =0,t) = exp[—(x* + y%)/we® — (t/t,)°], where
w, is the beam width and ¢, is the pulse length. The
parameters were chosen so that Lprk"/t,? = 0.1 and
P/P, = 1.5, where Lpr = wo’k/2 and P, is the crit-
ical power for two-dimensional SF. In Fig. 1 the
contours of the intensity, |A(x,y = 0, £)|2, and the far-
field spectrum, log[|A(k,,k, = 0, w)|], are displayed
for z = 0.0, 1.1, and 1.5 times the diffraction length,
Lpr. Figure 1(a) shows the initial pulse as it enters
the medium. Its spectrum is localized, appearing
oval in (w, k;). In Fig. 1(b) the pulse has propagated
into the medium, reaching a stage just before the
splitting event. A four-wave interaction has trans-
ported energy from the band of wave trains, (, @),
to sidebands at (k, * k., k, * k,, 0 = Q). The inter-
action broadens the spectrum in both frequency and
wave number, but it is most efficient along curves
for which Q2 « k,2%, where k, = (k.,«,). The four-
wave. interaction that produces this new spectral
feature dominates the spectral broadening process.
In Fig. 1(c) the pulse has split. A faint indication of
modulations in the frequency spectrum can be seen,
which at higher values of the initial power are read-
ily apparent.® Analogous spatiotemporal four-wave

~ interactions destabilize both the condensate® and

the cw beam!* solutions of Eq. (1).

A consequence of the growth of this new spectral
feature is the appearance of frequency-shifted off-axis
radiation in the far-field image of the pulse, which

© 1994 Optical Society of America
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Carrier Wave Shocking of Femtosecond Optical Pulses

R.G. Flesch, A. Pushkarev, and J. V. Moloney

Arizona Center for Mathematical Sciences. Department of Mathematics. University of Arizona. Tucson, Arizona 83572)
(Received 20 June 1995)

Numerical integration of Maxwell's equations for propagation of a femtosecond pulse in a medium
with linear Lorentz response and a Kerr nonlinearity shows shock formation on the underlving carrier
wave prior 1o the envelope shock. The carrier shock is characterized by the appearance of a strong
third harmonic pulse. whereas the envelope shock appears later as spectral broadening and modulation
of the fundamental and higher harmonic spectral features. -

PACS numbers: 42.65.Ky

Advances in laser technology in the past decade have
made possible the production of pulses which contain a few
optical cycles [1]. Although such ultrashort pulses contain
small amounts of optical energy. enormous intensities
exceeding 1 TW/cm” can arise and the accompanying
intensity-dependent corrections to the index of refraction
are such that one can expect novel nonlinear phenomena
such as shock formation over very short propagation
lengths. It has been suggested in [2] that an envelope
shock was observed experimentally {3] and that this can be
understood using standard envelope approximations [2.4]
to Maxwell's equations. Laser-induced breakdown (LIB)
cannot be ruled out at such very high peak intensities.
but there is evidence to show that for such short and
hence low energy pulses the cascade-avalanche path is
unlikely and multiphoton processes are more likely to lead
to breakdown [5]. Indeed. very recent experiments in
water using 100 fs pulses indicate that local peak field
intensities can exceed 10'* W/cm? in the focal region
with incident pulse absorption being less than 5% [6]).
Moreover, breakdown becomes a sensitive function of
optical wavelength. Shock formation on the carrier wave
is expected therefore to compete with other physics during
the critical collapse of femtosecond duration optical pulses
in optically transparent media where the Jocal intensity at
the critical collapse distance can become very large.

The above breakdown scenario is extremely compli-
cated. so we confine our attention here to plane wave
propagation for simplicity and show that an optical carrier
shock can arise in a medium with an instantaneous Kerr
nonlinearity. Dispersion plays an important role in shock
regularization (smoothing) and influences the signature of
the carrier shock. As dispersion is typically strong for such
short optical pulses [the dispersion length scales as k"/ T,z,,
where &" is the leading order contribution to the group ve-
locity dispersion (GVD) and 7p is the characteristic pulse
length], phase mismatch leads to the separation in time of a
strong third harmonic optical pulse moving with a different
group velocity from the fundamental. For very weak dis-
persion, a component of the third harmonic pulse moves
with the fundamental and, in the dispersionless case, all
higher harmonics of the fundamental are phase matched

2488 0031-9007/96/76(14)/2488(4)$10.00

and see explosive growth. As the phenomena we are con-
cerned with occurs on the scale of the carrier wavelength,
no envelope approximations are valid and one must resort
to a numerical integration of Maxwell's equations. Nu-
merical schemes for the integration of Maxwell's equations
have been refined in the past few years [7] to allow for an
efficient integration of media with memory in both the lin-
ear and nonlinear polarizations.

We restrict our attention to nonmagnetic dielectric me-
dia with no free charges. in which case we have for
Maxwell's equations

or ez ar E:;_ (
where all quantities above and in the following are in
MKS units. The medium is modeled by a single Lorentz
oscillator plus an instantaneous Kerr nonlinearity
D.(z.1) = GO{SIE,\-(:.H - /

7 -

dr’ x(t = t"\E (z.1")

+ X‘-"Ei(:.r)}, )

with the linear susceptibility given by Xx(t) = w,:,e'f” =X
sin(Vwj = 6%/41)/\wl - 67/4. [iw) = w? /(wi ~
ibw — w?)], w;’, = (e; — ex)wi. & and e, are the
static and infinite relative permittivities. respectively. and

. wo the resonance frequency of the Lorentz oscillators.

Maxwell’s equations are solved by either a second order
in time, second order in space [(2.2)] finite difference time
domain method [8] or a second order in time, fourth order
in space [(2,4)] scheme [9]. The numerical dispersion
inherent in these methods has recently received a good
deal of attention [10], and we have chosen our spatial
discretizations accordingly.

The convolution integral P, = ¢, Jdt' x(t = t)E (1)
in Eq. (2) is most efficiently solved by replacing it with
the equivalent second order ordinary differential equation
[7,11]

1 d*°P, & dP, w?
—_— — — + = e—— N 3)
wy dr? wi di P 0l €oEx (

which is solved by second order central differencing.

© 1996 The American Physical Society
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Laser-induced breakdown versus self-focusing for focused
picosecond pulses in water
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We present numerical studies of nonlinear propagation for picosecond pulses focused in water. Depending
on the pulse duration and focusing conditions. for some input powers self-focusing may precede laser-induced
breakdown and vice versa. We derive a criterion that predicts the relative roles of laser-induced breakdown

and self-focusing. £ 1995 Optical Society of America

The nonlinear-optical properties of liquid water are of
considerable interest!? owing to their implications for
propagation in the eye, the vitreous humor being pre-
dominantly water. Water displays self-focusing (SF)
at megawatt input powers?® and has been suggested
as the source of retinal damage at anomolously low
energies for femtosecond pulses.* Water also displays
laser-induced breakdown (LIB),°~" in which an elec-
tron plasma grows exponentially by avalanche ioniza-
tion.® Once generated, this electron plasma serves to
absorb and scatter the remaining pulse energy, thus
effectively shielding the area bevond the plasma, i.e.,
the retina.®!* The interplay between SF and LIB is
therefore of importance in assessing laser eye damage.

In this Letter we report numerical simulations of
SF and LIB in water using picosecond pulses. Our
numerical simulations revealed cases of peak input
powers for which SF preceded LIB and vice versa, de-
pending on the pulse duration and focusing conditions
(see also Refs. 2, 12, and 13). Here we develop a criti-
cal power Ppp for LIB that can be compared with the
critical power P, for SF: For P;g > P,., SF precedes
LIB; for Ppig < P, LIB precedes SF. Numerical
simulations are presented to show that this criterion
predicts the correct dependence on focal length and
pulse duration.

Our theoretical model for LIB is that previously
described by Feit and Fleck! appropriately extended to
in¢lude nonlinear SF.”* The equation for the electric-
field envelope E(r, z, t) in a reference frame moving at
the group velocity is then

ad i o

% = ﬁv,zﬂ.f - ?(1 + iwr)nF + ikonol FI2E,

1)

along with the following Drude model describing
avalanche ionization of the electron density n (Ref. 6):

an _. T AFR — an?

o .(ln 2) E, n|El* - an®. 2)
Here | Z |2 is the intensity, & = nyko = nyw/c, ng is the
nonlinear coefficient, ¢ is the cross section for electron-

N142.0EQ07/0KM10108Q N2EE AAM

neutral inverse bremsstrahlung, 7 is the electron

collision relaxation time, E, is the ionization energy,
and a is the rate of radiative recombination. Here we
consider the following parameter values appropriate
to the visible wavelength Ag = 580 nm: 7 = 10715,
ny =133, ng =2 x 1071 em?/W2 E, = 6.5 eV,
a=10%m®s 1Y and ¢ = 14 X 10717 cm2.™
The critical power for SF is P, = 0.15A2/nyns, which
vields P, = 2 MW for the above parameters.?

We are interested in the solutions of Egs. (1) and (2!
for an initial Gaussian beam focused onto the water
sample through a lens of focal length f,

v 2 2 3.0
Zr,0,t) =J2Pm2 exp(—-r—2 _ Bk ), (8
w

Wy

where Py, is the peak power, wy is the spot size, and f,
is the pulse length. In the absence of LIB the behavior
of the field is dictated by the power ratio P,,/P,, since
each time slice of the pulse acts independently.’®> For
Py /P > 1 the central time slice of the pulse undergoes
collapse to a singularity at a nonlinear focal distance

1

1
2NL(Pin)

(4
39

S
f

where zn1.(Pj,) is the nonlinear collapse distance with-
out the lens.”® For P,/P.; = 1 we have zy, — =, SO
that the field collapses at the linear focus.

Our numerical simulations based on Egs. (1) and (2)
show that LIB prevents catastrophic SF to a singular-
ity by absorption and defocusing of the incident field
that result,from the electron plasma.* However, SF
can proceed a considerable distance into the collapse
before it is arrested by LIB. To obtain a criterion for
the relative roles of SF and LIB we neglect the effects
of SF. Then the input Gaussian field will come to 8
focus at a longitudinal position d = f/(1 + f2/z¢)’
where zo = 7rwgng/ A is the Rayleigh range of the in-
put beam. The size of the laser beam w;, at the focus
is (wy /wo)® = (F*/2¢")/(1 + F2/2") = 27 /20, with z; the
Rayleigh range of the focused beam. To obtain a cr1
terion for LIB we use the following model: The laser
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Nonlinear focusing of femtosecond pulses as a result of
self-reflection from a saturable absorber
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We calculate the spatiotemporal evolution of intense, femtosecond pulses that are incident upon a saturable
absorbing interface in the regime of self-reflection, using the finite-difference time-domain computational
method. The pulses induce a curved, moving absorption front in the nonlinear medium that acts as a transient
focusing mirror for the reflected pulse energy. © 1997 Optical Society of America

The propagation of an intense optical field that is inci-
dent from air upon a saturable absorber can give rise
to a self-reflected wave if the absorption is sufficiently
large.! The reflected wave arises at a wavelength-
scale spatial transition between the saturated and the
unsaturated regions of the absorber,? akin to the skin
effect at a linear boundary, and is self-reflected in
the sense that the transition region is induced by the
incident field itself. The self-reflected wave first pre-
dicted for a cw incident plane-wave field' was subse-
quently extended to consideration of a cw incident beam
with a Gaussian transverse profile.® In the latter case
the emergence of a halo was predicted in the far field at
high intensities. Recently, the finite-difference time-
domain (FDTD) method*® was used to study the dy-
namics of self-reflection under pulsed excitation and to
predict an intensity-dependent Doppler shift in the re-
flected pulse.®

In this Letter we include transverse variations to
study the spatiotemporal dynamics of self-reflection.
The FDTD method discretizes the differential form
of Maxwell’s equations directly and allows one to de-
termine the evolution of an optical field in a nonlin-
ear medium, subject to the given constitutive relations
between the electric field and polarization (see, e.g.,
Refs. 7 and 8) and without recourse to the slowly vary-
ing envelope approximation. We examine pulse shap-
ing in the near field, close to the absorber boundary,
and predict a new nonlinear-focusing effect, which we
attribute to the formation of a transient focusing mir-
ror in the absorber. As the incident pulse impinges
upon and strongly saturates the absorber, it excites
a moving reflection front® that is shaped according
to the transverse profile of the incident pulse. If the
incident pulse’s transverse profile is bell shaped, so
too is the resulting mirror, and the reflected pulse
is focused according to the waist and intensity of the
incident pulse. In addition to being reshaped, the
reflected pulse is spectrally broadened and red shifted
owing to the Doppler effect at the moving mirror.®

We consider the time-dependent propagation of a
two-dimensional TE-polarized pulse, in which the elec-
tric field is polarized along the y axis and is also
assumed to be uniform along that axis, E(r,t) =

0146-9592/97/040239-03$10.00/0

yE,(x,2z,t). Then the Maxwell equations for the elec-
tric and magnetic field quantities E,, B,, and B, are

3B, _9E, 4B, _9Ey, 4D, 1(aB, aBZ)

20z ax
(1)

where the z axis is the propagation direction and the x
axis is the transverse direction. The nonlinear-optical
response of the saturable absorber is included by use
of a two-level model through the constitutive relation
D, = &E, + P,, where the macroscopic polarization
P, = Np(p21 + c.c.) is determined by the Bloch equa-
tions® '

at  az ot ex  at  mo

2 . . pE
—"‘g? + (ye + iwa)pa = i _pﬁy n,
on . PE
_3? + 'yl(n - 1) = 2 —h—y('pm - pzl*). (2)

Here N is the density, p2; is the off-diagonal density
matrix element, n = (p1;1 — p22) is the population
difference, wg; is the transition frequency, p is the
dipole moment, and y; = 1/t; and y; = 1/t are
the population and polarization damping constants,
respectively.

The conditions for self-reflection of a continuous
plane-wave incident field require that the normalized
parameters ¢ = p?N/echyz and F = pEy/h(y1y2)?
be greater than unity, with E, the peak input field.
Physically, this requires that the linear absorption be
large, on a wavelength scale, and that the incident
field be strong enough to saturate the absorption.? In
the case of ultrashort pulses we also require that
the incident pulse duration ¢, be greater than the
polarization decay time but less than the population
decay time,i¢; > t, > £,.° To meet these conditions
for the sub-100-fs pulses to which we were restricted
by computational resources, we adopted the following
medium parameters for illustrative purposes: ¢, =
05ns,t =10fs, w = wg; =2 X 10¥ rads™ ! (A =
942 nm), p =4 X 1072 C, and Ny = 2 X 10%° cm™3.
For these values a normalized field strength of F
1 corresponds to an electric field strength of Ep

© 1997 Optical Society of America
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We introduce the dynamic nonlinear optical skin effect in which a pulse incident on a saturable
absorbing interface is self-reflected from a moving absorption front. The motion of the front causes
the self-reflected wave to be redshifted by the Doppler effect, which in turn serves as an experimentally

observable signature for the front propagation.

PACS numbers: 42.65.-k, 41.20.Jb, 42.50.Gy

In the linear optical skin effect a pulse incident from
air is reflected from a highly absorbing interface after
penetrating only a fraction of a wavelength into the ab-
sorbing medium, this distance being the skin depth [1,2].
The skin effect is therefore of fundamental importance in
understanding the electrodynamics of pulse propagation
at condensed matter interfaces, such as metals for field
frequencies below the plasma frequency [2], and semicon-
ductors with highly absorbing excitonic features [3]. In
addition, it belongs to an important class of optical prob-
lems for which the notion of an electromagnetic field en-
velope varying slowly on the scale of a wavelength simply
does not apply. The skin effect cannot be understood on
the basis of envelope equations but is rather a consequence
of Maxwell’s equations for the interface.

In this Letter we introduce the dynamic nonlinear
optical skin effect for pulses and elucidate the underlying
physics. In the nonlinear skin effect a high intensity
pulse is incident upon a nonlinear absorbing interface.
Broadly speaking, saturation of the absorption allows the
incident field to penetrate beyond the linear skin depth
into the medium, and this causes an absorption front to
propagate into the medium which separates the regions of
low (saturated) and high (unsaturated) absorption. The
front is excited by the incident pulse which is in turn
reflected from the sharp absorption front, yielding a self-
reflected pulse [4]. Thus the absorption front acts as a
moving mirror from which the pulse is self-reflected, and
the pulse suffers a redshift due to the Doppler effect [5].

Continuous wave (cw) self-reflection from stationary ab-
sorption fronts for plane wave [4] and transverse Gaussian
[7] fields incident at sharp and smooth [6] interfaces has
been studied theoretically but not experimentally verified
so far. In part, this is due to the extremely high absorption
and strong saturation required for its manifestation, but the
difficulty of obtaining good experimental signatures should
not be overlooked. Here we explore the transient regime
using the two-level Maxwell-Bloch equations. In partic-
ular, we show that moving fronts are excited by the inci-
dent pulse [8,9] and that the self-reflected pulse bears clear
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spectral signatures due to the Doppler effect, which should
be observable experimentally.

We consider the time-dependent propagation of a
linearly polarized plane electromagnetic wave incident on:
a nonlinear medium composed of two-level systems. . For
propagation along the z axis, and taking the electric field
polarized along the x axis, Maxwell’s curl equations take
the form [1,2]

3By _ 9E, oD, 0H,

_ = . = ——, 1
at az dt az (h

where B, = uoH,. The specification of the problem is
completed with the constitutive relation D, = €yE, +
P, where P, is the optical polarization. To elucidate the
basic physics we employ a two-level model to describe the
optical response with lower electronic state |1) and upper
state ]2). The Bloch equations are then (see, for example,
Ref. [10])

] E
% + (y2 + iwa)pn = ip?n,
an . PE ¥
o + yi(n — 1) = 2i —ﬁf(le = pa). (2
where pa) is the off-diagonal density matrix element, n =
p11 — px is the population difference between the lower

and upper states, w») is the transition frequency, p is the
dipole moment in the field direction, and y; and vy, are
phenomenological damping constants for the population
and polarization, respectively. The polarization due to
the atoms is then given by P, = N(z)p(p21 + c.c.), with
N(z) the density of two-level systems which varies along
Z in general.

Equations (1) and (2) are solved using a standard
discretization scheme described by Yee [11] and the
Bloch equations integrated in time using a fourth-order
Runge-Kutta method. The system of equations was
solved with the initial condition on the field

E.(z,t =0) = Egcos[2mw(z — 20)/c]e_‘:":"):/(“”):,
3)
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REFLECTION OF LOCALIZED BEAMS FROM A NONLINEAR
ABSORBING INTERFACE *

J. A. POWELL?, E. M. WRIGHT?, AND J. V. MOLONEY?

Abstract. Beam propagation and reflection are studied at the interface between a Kerr medium
and a saturable absorbing nonlinear medium. For spatial solitons propagating nearly tangent to the
interface, slowly varying envelope theory describes beam behavior. Phenomena are studied using
numerical beam propagation and dynamical systems arguments. Projecting the dynamics onto the
soliton modes of the nonabsorbing medium, an effective-particle theory is developed for the reflected
beam. The results of the effective-particle theory and the numerical analysis are compared, and a
heuristic criterion for predicting reflection and absorption of beams is derived.

Key words. beam reflection, nonlinear optics, effective-particle theory

AMS subject classifications. 78A60, 7T0K05,58F39, 58F40

1. Introduction. The reflection properties of nonlinear dielectric interfaces have
attracted considerable interest over the last years due to potential applications in all-
optical switching [1]-[13]. The basic idea is to understand what adjustable parameters
control the reflection of beams at interfaces between optical materials. The angle of
beam reflection may be controlled simply by varying the power or phase of an input
beam, without changing the incident angle of the input beam. This could result in
switching devices that are all-optical, that is, that do not depend on conversion of
optical to electric signals, and subsequent slowing of response and loss of information,
for switching. In particular, using plane wave theory, Kaplan first predicted bistable
reflection, or the possibility of multiple beam reflections dependent on external con-
trol parameters, from a linear-nonlinear interface for incidence angles close to the
critical angle for total internal reflection [1]. Subsequent numerical simulations using
localized beams of finite transverse extent, typically Gaussians, failed to show bistable
reflection but exposed several exciting new phenomena such as the nonlinear Goos—
Hénchen effect (9], and the transmission of self-focused channels (or solitons) through
the dielectric interface [2], [7].

The dynamics of localized beams incident on nonlinear dielectric interfaces was
put on a firm theoretical foundation by the introduction of the effective-particle theory
by Aceves, Moloney, and Newell [10]. In this theory the incident beam, usually a spatial
soliton, is treated as a particle whose motion is dictated by an effective potential that is
derived from the linear and nonlinear properties of the interface. Thus, for example,
the nonlinear Goos-Hinchen shift can be viewed as critical, slowing down as the
particle approaches a turning point of the effective potential.

In this paper we consider the reflection of localized beams from nonlinear ab-
sorbing interfaces. Roso-Franco previously showed that for plane waves at normal
incidence the nonlinear absorbing interface can diéplay many novel features including
bistability and the generation of backward—propaga’.@;ing waves [14]. Here we investi-
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